Applying the Technology Acceptance Model to Evaluation of Recommender Systems
نویسندگان
چکیده
In general, the study of recommender systems emphasizes the efficiency of techniques to provide accurate recommendations rather than factors influencing users’ acceptance of the system; however, accuracy alone cannot account for users’ satisfying experience. Bearing in mind this gap in the research, we apply the technology acceptance model (TAM) to evaluate user acceptance of a recommender system in the movies domain. Within the basic TAM model, we incorporate a new latent variable representing self-assessed user skills to use a recommender system. The experiment included 116 users who answered a satisfaction survey after using a movie recommender system. The results evince that perceived usefulness of the system has more impact than perceived ease of use to motivate acceptance of recommendations. Additionally, users’ previous skills strongly influence perceived ease of use, which directly impacts on perceived usefulness of the system. These findings can assist developers of recommender systems in their attempt to maximize users’ experience.
منابع مشابه
Evaluation of recommender systems: A multi-criteria decision making approach
The evaluation and selection of recommender systems is a difficult decision making process. This difficulty is partially due to the large diversity of published evaluation criteria in addition to lack of standardized methods of evaluation. As such, a systematic methodology is needed that explicitly considers multiple, possibly conflicting metrics and assists decision makers to evaluate and find...
متن کاملProviding a model based on Recommender systems for hospital services (Case: Shariati Hospital of Tehran)
Background and objectives: In the increasingly competitive market of the healthcare industry, the organizations providing health care services are highly in need of systems that will enable them to meet their clients' needs in order to achieve a high degree of patient satisfaction. To this end, health managers need to identify the factors affecting patient satisfaction focus. T...
متن کاملEnsemble-based Top-k Recommender System Considering Incomplete Data
Recommender systems have been widely used in e-commerce applications. They are a subclass of information filtering system, used to either predict whether a user will prefer an item (prediction problem) or identify a set of k items that will be user-interest (Top-k recommendation problem). Demanding sufficient ratings to make robust predictions and suggesting qualified recommendations are two si...
متن کاملModeling a Smart Hospital Information Architecture Based on Internet of Things and Recommender Agent
Introduction: Today, healthcare organizations worldwide are aware of the significance of technology and its impact on the quality of care. Hospitals are one of the most crucial systems in which the utilization of information is particularly important for several reasons. Using discrete-event simulation and developing a recommender agent, this study aimed to allocate IoT devices to patients in s...
متن کاملA Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information
The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Polibits
دوره 51 شماره
صفحات -
تاریخ انتشار 2015